|
Evaluating LNAPL Remedial Technologies for Achieving Project Goals - Part 3 Internet-based seminar
Light non-aqueous phase liquids (LNAPLs) are organic liquids such as gasoline, diesel, and other petroleum hydrocarbon products that are immiscible with water and less dense than water. Understanding LNAPLs is important because they are present in the subsurface at thousands of remediation sites across the country and are often the sole reason why a site remains open. The spectrum of sites where LNAPL assessment and remediation efforts may take place include petroleum manufacturing and handling facilities such as refineries, bulk product terminals, gas stations, airports and military bases. LNAPLs in the subsurface can be a complex problem to address, and frequently prevent or delay regulatory closure (no further action) of remediation projects. Over the past few decades, LNAPL remedial technologies have evolved from conventional pumping or hydraulic recovery systems to a variety of innovative, aggressive, and experimental technologies that address the mobile and residual LNAPL fractions, as well as volatile and dissolved-phase plumes. Thus, many different LNAPL remedial technologies with differing site and LNAPL applicabilities and capabilities are available to remediate LNAPL releases. This can make selection of a remedial technology daunting and inefficient. To foster informed remedial technology selection and appropriate technology application, the LNAPLs Team developed the ITRC Technical and Regulatory Guidance document, Evaluating LNAPL Remedial Technologies for Achieving Project Goals (LNAPL-2, 2009). This document addresses seventeen LNAPL remedial technologies and provides a framework to streamline remedial technology evaluation and selection. This training course is relevant for new and veteran regulators, environmental consultants, and technically-inclined site owners and public stakeholders. The training course is divided into three parts:
Previous Events (click to view/hide)
|
||||||||||||||||||||||||||