Corrosion Prevention for AST's and Piping Systems 2004 OSC Readiness Training Program

Presented by: James T. Lary Corrpro Companies, inc. 1090 Enterprise Drive Medina, Ohio 44256 jlary@corrpro.com 330-723-5082

Corrosion of Tanks and Piping

James T Lary November 16, 2004 OSC Readiness Training

NACE International – The Corrosion Society

- 1. NACE International Overview
- 2. Cost of Corrosion
- 3. Aboveground, Underground Storage Tanks, and Associated Piping Systems
- 4. NACE Resources

Our Vision

NACE International will be recognized as a world-class corrosion society by contributing significantly to the enhancement of global corrosion efforts.

Our Mission

To reduce the impact of corrosion.

- Global Forum for Corrosion Technology
- Global Source for Corrosion Education & Training
- Internationally Recognized Standards

- 60th Anniversary
- Not-for-Profit Organization
- 15,000 Individual Members in 91 Countries
- 275 Corporate Members
- Organized in 82 Sections

- Education Programs
- Professional Recognition
- Coating Inspector Training
- Cathodic Protection Certification

- NACE Standards
- Conferences/Expos
 - •CORROSION/2004 Houston, TX. March 2005
 - •Corrosion Technology Week 2004 Phoenix, AZ, Sept. 2004
- Periodicals
- Publications & Software

NACE International – Education & Certification

NACE Education Classes Designed To:

- Introduce fundamentals of corrosion control
- Expand existing knowledge
- Provide professional recognition & certification

NACE International – Education & Certification

10 Certification Categories

- Coating Inspector Program
 - Three Courses
 - 5,500 recognized individuals worldwide
- Cathodic Protection Certification

NACE International – Education & Certification

- NACE Certification Specified Worldwide
- Qualified Personnel
- Ensure Safe Operations
- Extend Asset Life
- Reduce Downtime
- Improved Quality Assurance

NACE International – Standard & Reports

Standards Recognized Worldwide

• 118 NACE Standards

- 19 Material Requirements
- 69 Recommended Practices
- 30 Test Methods
- 60 Technical Committee Reports

What is the Cost of Corrosion?

\$276 Relates Cost of Corrosion Study

Cost of Corrosion

• All costs are direct corrosion costs

- Cost of labor attributed to corrosion management activities
- Cost of the equipment required because of corrosion related activities
- Loss of revenue due to disruption in supply of product
- Cost of loss of reliability
- Cost of lost capital due to corrosion deterioration

Methods & Services

All costs are direct corrosion costs
Disadvantage: many costs are missed
Cost of labor attributed to corrosion management activities.
Cost of the equipment required because of corrosion-related activities.
Loss of revenue due to disruption in supply of product.
Cost of loss of reliability.

Cost of Corrosion – Industry Sector Analysis

AIRCRAFT ACCIDENT REPORT ALOHA AIRLINES, FLIGHT 243 BOEING 737-200, N7371I, NEAR MAUI, HAWAII APRIL 28, 1988

Extrapolated Corrosion Costs: \$276 Billion, 3.1% of GDP

Non-Technical Preventive Strategies

- Increase awareness of the widespread effects of corrosion
- Build awareness of the huge cost associated with corrosion
- Build awareness of potential savings
- Change the misconception that nothing can be done about corrosion
- Change policies, regulations, standards, and management practices to increase corrosion savings
- Improve education and training of staff

Technical Preventive Strategies

- Advance design practices for better corrosion management
- Advance life prediction and performance assessment methods
- Advance corrosion technology through:
 - Research
 - Development
 - Implementation

Recognize the commonality of the problem regardless of the structure; but also that corrosion may manifest itself differently in each application.

Aboveground and Underground Storage Tanks and Associated Piping Systems

Impact of Corrosion

8.5 million tanks in the U.S. (regulated and non-regulated)
\$ 4.5 Billion Cost to AST
\$ 2.5 Billion Cost to UST
Total Cost of \$7 Billion annual cost

Corrosion is one of the leading causes of storage tank and piping failures

Corrosion Control Regulations

By the Oil Pollution Act of 1990:
The owner <u>must</u> have a Spill Response Plan
The owner <u>must put in place measures</u>, practices, etc. to limit the possibility of releases based upon industry accepted sound engineering practice in <u>design</u>, operation, and maintenance of the facility
The reg. does not regulate corrosion control, but does say prevent release.

•1998 EPA Regulation for UST – Requires that all tanks to have corrosion control, as well as overflow and spill protection

Corrosion Control Regulations

Spill Prevention Control and Countermeasure (SPCC) Regulation

•*Provide buried piping that is installed or replaced after August 16th, 2002 with a protective coating and cathodic protection.*

•Should a section of line be exposed for any reason it must be inspected for deterioration. If corrosion damage is found you must take additional examination and corrective action.

NACE Standards

NACE has either developed or is in the process of developing standards to address Tank and Pipeline integrity:

•RP0169-2002, Control of External Corrosion on Underground or Submerged Metallic Piping Systems

•TM0101-2001, Measurement Techniques Related to Criteria for Cathodic Protection

•RP0193-2001, External Cathodic Protection of On-Grade Carbon Steel Storage Tank Bottoms

NACE Standards (con.)

•RP0285-2002, Corrosion Control of Undergorund Storage Tank Systems by Cathodic Protection

•TM0497-2002, Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Piping Systems

API Standards

API 570 Piping Inspection Code
API 651 Cathodic Protection of Aboveground Petroleum Storage Tanks
API 652 Lining of Aboveground Petroleum Storage Tanks Bottoms
API 653 Tank Inspection, Repair, Alteration, and Reconstruction
API 1632 Cathodic Protection of Underground Petroleum Storage Tanks and Piping Systems

NACE International – The Corrosion Society

Thank You!

Corrosion Control & Cathodic Protection for Storage Tanks and Piping Systems

Presented by: James T. Lary Corrpro Companies, inc. 1090 Enterprise Drive Medina, Ohio 44256 jlary@corrpro.com 330-723-5082

What we will cover....

- Causes of Corrosion
- Regulatory Issues (State/Federal)
- Cathodic Protection for Tanks and Piping
- Operation & Maintenance

API Definition

1.2.1 An aboveground storage tank is a stationary container of greater then 500 barrel capacity, usually cylindrical in shape, consisting of a metallic roof, shell, bottom, and support structure where more then 90% of the tank surface is above grade

AST Storing

- Gasoline - Diesel - Kerosene - Aviation Fuel - Fuel Oil - Hazardous Material/Chemicals Spill Prevention Control and Countermeasure (SPCC) Regulation (Implementation Required by 8/16/06)

- Provide buried piping that is installed or replaced after August 16th, 2002 with a protective coating and cathodic protection.

- Should a section of line be exposed for any reason it must be inspected for deterioration. If corrosion damage is found you must take additional examination and corrective action.

Spill Prevention Control and Countermeasure (SPCC) Regulation (Implementation Required by 2/18/05)

- Provide buried piping that is installed or replaced after August 16th, 2002 with a protective coating and cathodic protection.

- Should a section of line be exposed for any reason it must be inspected for deterioration. If corrosion damage is found you must take additional examination and corrective action.

Federal Level (Breakout Tanks)

a) Relieves surges in a hazardous liquid pipeline system or b) receive and store hazardous liquid transported by a pipeline for reinjection and continued transportation by pipeline

Breakout Tank

Main Line

State Level

- Approximately 25% of States now require cathodic protection be installed and maintained on new, refurbished, or repaired tanks in contact with soil or sand foundations.

- A number of other states are in the process of implementing regulations governing AST's.

Terminal Tankage

Main Line

Why is Cathodic Protection Important?

- Preserve Assets
- Reduce Maintenance Costs
- Reduce Inspection Cost
- Company/Government Requirement
- Preserve The Environment

Corrosion Can be Defined as Either:

Practical

Tendency of a Metal to Revert to its Native State

Scientific

Electrochemical Degradation of Metal as a Result of a Reaction with its Environment

THE PROBLEM.....

- 3) ELECTROLYTE
- 2) CATHODE
- 1) ANODE

Corrosion of Metallic Structure

PRACTICAL GALVANIC SERIES

Material	Potential*	
Pure Magnesium	-1.75	
Magnesium Alloy	-1.60	
Zinc	-1.10	
Aluminum Alloy	-1.00	
Cadmium	-0.80	
Mild Steel (New)	-0.70	
Mild Steel (Old)	-0.50	
Cast Iron	-0.50	
Stainless Steel	-0.50 to + 0.10	
Copper, Brass, Bronze	-0.20	
Titanium	-0.20	
Gold	+0.20	
Carbon, Graphite, Coke	+0.30	

* Potentials With Respect to Saturated Cu-CuSO₄ Electrode

3) ELECTROLYTE

- 2) CATHODE
- 1) ANODE

- 3) ELECTROLYTE
- 2) CATHODE
- 1) ANODE

- 3) ELECTROLYTE
- 2) CATHODE
- 1) ANODE

3) ELECTROLYTE

- 2) CATHODE
- 1) ANODE

3) ELECTROLYTE

- 2) CATHODE
- 1) ANODE

- 3) ELECTROLYTE
- 2) CATHODE
- 1) ANODE

Piping Installation

Corrosion Cell Caused by Foreign Material in Sand Cushion

SAND

Steel Tank Floor

CLAY CURRENT FLOW

ंग्रि

Bimetallic Corrosion

New Steel Coupled to Old Steel New Bottom (Anode) **CURRENT FLOW** SAND **Old Bottom (Cathode)** \mathbf{O} SAND

Types of Cathodic Protection

<u>Galvanic</u>: Current obtained from a metal with a higher energy level.

<u>Impressed Current</u>: Requires external power source (transformer rectifier).

Galvanic Anode Cathodic Protection

Current is obtained from a metal of a higher energy level

PRACTICAL GALVANIC SERIES

Material	Potential*	
Pure Magnesium	-1.75	
Magnesium Alloy	-1.60	
Zinc	-1.10	
Aluminum Alloy	-1.00	
Cadmium	-0.80	
Mild Steel (New)	-0.70	
Mild Steel (Old)	-0.50	
Cast Iron	-0.50	
Stainless Steel	-0.50 to + 0.10	
Copper, Brass, Bronze	-0.20	
Titanium	-0.20	
Gold	+0.20	
Carbon, Graphite, Coke	+0.30	

* Potentials With Respect to Saturated Cu-CuSO₄ Electrode

Galvanic Cathodic Protection

Gas Water Heaters

It's their performance and dependability that keep you in hot water... check their features, check the facts!

- Warranty...our 5 to 10-year limited warranties convey our confidence in Kenmore quality and longevity
- Polyurethane foam or fiber glass insulation resists heat loss and helps save energy Polyurethane insulation provides 175% greater heating insulation than fiber glass
- Anode rods help protect water tank from internal corrosion and premature tank failure
- Energy cut-off automatically shuts off power supply if thermostat fails, prevents overheating
- Adjustable thermostat keeps your hol water at pre-selected levels, "low" setting lets you save energy while you're away
- Porcelain glass lining in our steel tank helps prevent rust to extend tank life and helps maintain hat water supply

- V Tank has limited IO-year warranty against leaks
- Roto-Swin™ cold water inlet tube swints water to help prevent mineral build-up at bottom of tank ... extends tank life
- Porcelain glass lining and 2 anode rods help fight rust and corrosion
- Fastest hot water recovery rate of any gas unit we sell

Natural gas only

SHE MACHINE TH

Power Miser 8 Tank has initied 8-year waranty against leaks 1-inch polyurethane

form insulation

(R-value 8.33) Roto-Switt^{IM} cold water

Then in the past ball of Fight back with our finant gas water heater. It has a recovery efficiency of over 80% thereas to its unique combustion

UD

chamber and air inteller literary. The polyurethane from insulation retains heat To litera projection standard blonglass insulation plus heat trap reports in cost and hot literatur intellections help to lower fair bills. Adjustable ges control automatically retained hotpenature you below. High imposition to be the second standard blonglass and and the second standard blonglass control automatically retained hotpenature you below. High impositantity built plans where Heapweers 3 or 4 each work, being another the literation American Barna and the second standard blonglass and and the second and the second standard Weinstein California states where the capital second plans tank literations where the for the second second second plans to be an include measure.

area.	Chartester e Resigns for justicest logit		Parconary of Sala, par he set 3077 (sal	Columny Assettant	Step al.	Peca
- 10	2010/14 10.	40.000	48.0 perm	42 Y 2304/N 1	172	\$349.94
Cartilera	poorts proy	40.000	48.0 pain	All + Discourse		and South
			for planning, from party		ing class	PER PER

Extrated annual energy costs based on

U.S. Dept. of Energy lext procedures and 1983 national average unlity ran

							strend a strend of the
Cenang	14		Advised strange list trange Ex al browth 'Sy first hour villing range	Contrag	-	4	Armud soungs institutings for all inspects by first hour reling integer
27127-28 221427-48 20247-48 20247-48 20247-48 20247-48 20247-30 20422-23 20422-23 20427-23 20427-23 20427-23 20427-23 20427-23 20427-24 20447-48 20	北京市市市市市市市市市市市市	·····································		2011 2002 2004 2022 2022 2022 2022 2022	のたちをなるののたちのである	14月日日の日本市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	

Con page 3254

«Extension account everys court for Source everys" arFirst those everys for Source events (c) galaxies. Additional responses arrange internation academic size page 2014.

FLANGE INSULATION KIT

INSULATING UNIONS

Recommended Practices

API-651 - Cathodic Protection of Aboveground Petroleum Storage Tanks:

> "Galvanic anodes method is not practical for protection of large bare structures."

NACE RP0193-2001 - External Cathodic Protection of On-Grade Carbon Steel Storage Tank Bottoms:

"Galvanic protection systems can be applied to tank bottoms where the metallic surface area exposed to the electrolyte can be minimized through the application of a dielectric coating or the area is small due to the tank size or configuration."

Impressed Current System

Impressed Current Cathodic Protection System

Anodes

Impressed Current Cathodic Protection

Above Ground Storage Tank Vertical Impressed Current Anodes - Existing Tanks

RECTIFIER

ANODE JUNCTION BOX

Deep Anode System

"One or more anodes installed vertically at a depth of 50 feet or more below grade, in a drilled hole, for the purpose of supplying cathodic protection..."

NACE International Definition

Deep Anode

Deep Anode System Advantages

- Better distribution of protective current
- Smaller right-of-way requirements
- Easily installed in congested areas

Conventional Deep Anode System Disadvantages

Premature system failure
 Costly re-drilling at failure
 Potential for cross mixing of subsurface aquifers
 Creates conduit for surface spills

Directional Boring Under Existing AST

TYPICAL ANODE INSTALLATION

Cathodic Protection Monitoring

Computer Guided Horizontally Bored Anode System

Leak Detection Monitoring Station

CP Applications for Re-bottomed or New Tanks

New Floor Installation on Existing AST

Impressed Current

CP Installation on Rebottomed Tank

Titanium Anode Ribbon and Reference Cells

Above Ground

Storage Tank Bottoms

with Secondary Containment

Secondary Containment

Environmental Protection

Minimize Liability

State and Local Regulations

New Tank Construction with Liner

CP Installation on Double Bottom Tank

Anocle & Reference Cell Placement in High Resistance Sand

Ringwall Conduit for CP Wiring

Floor Plate Installation

Existing Sand Bed

a de

Install Containment Liner

100 100

Installation of CP System on Lifted AST

Cathodic Protection Monitoring

- Read rectifiers every 60 days.
- Conduct annual inspection (obtain potentials) by NACE certified individuals.

T

pi baday x 15 : bat

Record Volts/Amps
Compare values to target settings

<u>Qualifications</u> of the corrosion engineer

- Certified by N.A.C.E. (National Association of Corrosion Engineers)
- Experienced in Cathodic Protection
- Experienced in Cathodic Protection of Fuel Storage Systems

Test Station

Computerized Potential Logging Survey

MFL Floor Inspection

Tank to Soil Potential Measurements

Annual Cathodic Protection Survey

	Rim	25'	Center	55'	Rim
On	-1411	-698	-404	-601	-1455
Off	-902	-664	-402	-578	-911

Potentials (mV)

Internal Corrosion

System Characteristics

<u>Galvanic</u>

- No external power
- Fixed driving voltage
- Limited current
- Small current requirements
- Used in lower resistivity environment
- Usually negligible interference

Impressed

- External power required
- Voltage can be varied
- Current can be varied
- High current requirements
- Used in almost any resistivity environment
- Must consider interference with other structures

Cathodic Protection Design Considerations

Safety Codes **Economics** Performance System Life Interference Monitoring & maintenance **Governmental Regulations**

Hot Asphalt Tank Bottoms

Linings

- Must be compatible with with product stored
- Must maintain properties at operating temperatures
- Must be applied to properly prepared surface
- Must be applied with strict inspection

Ductile Iron Water Piping

Pitting (concentrated) corrosion attack on ductile iron pipe.

Suspended Horizontal Anode System

Cathodic Protection Design Considerations

Safety Codes **Economics** Performance System Life Monitoring & Maintenance **Governmental Regulations**

<u>API-651</u> - <u>Cathodic Protection of Aboveground Petroleum</u> Storage Tanks:

NACE RP0193-2001 - External Cathodic Protection of On-Grade Carbon Steel Tank Bottoms:

Application Makes the DifferenceGood JobPoor Job

Proper Application

Application is the most expensive and most important part of the job...give it the attention it deserves!

Cost Breakdown Typical Coating Project

Surface **Preparation 65% Material** Application 10% 25%

Approximate Percentage of Coating Failure Occurrences, Grouped by Root Cause

Coating Inspection

Pipeline Integrity Inspections

Pipeline Inspection Tool

Corrosion Induced Cracking of the Concrete

- Carbonation
- Chloride Contamination

- Be aware of all regulations that may pertain to your tanks and piping. When in doubt talk to the governing agencies.
- Engage NACE qualified & experienced personnel to engineer/maintain your cathodic protection system.
- Refer to NACE/API Standards for guidance.

Questions...

Thank You

James T Lary Corrpro Companies, Inc. 1090 Enterprise Drive Medina, Ohio 44256 330-723-5082 (215) email jlary@corrpro.com

Arc-Sprayed Al-Zn-In (Galvanic)

- Thermally sprayed onto concrete
- Al-20Zn-0.2In
- Applicable in marine & northern deicing salt environments
- Indium (In) used as activating agent

Presented by:

James T. Lary Corrpro Companies, Inc. World Headquarters 1090 Enterprise Drive Medina, Ohio 44256 Phone: 330-723-5082 Fax: 330-723-0694 Email jlary@corrpro.com

Computerized Potential Logging Survey

	Rim	25'	Center	55'	Rim
On	-1411	-698	-404	-601	-1455
Off	-902	-664	-402	-578	-911

Potentials (mV)

Impressed Current Cathodic Protection

Annual Cathodic Protection Survey

Shallow Anodes

Double Bottom Seal

Pennsylvania DEP Summary of Technical Requirements for Aboveground Storage Tanks, Chapter 245, Subchapter F, Effective October 11, 1997...

Cathodic Protection Systems (§245.532)

"When corrosion prevention is required on new, reconstructed or relocated tanks, or on tank bottom replacement, the cathodic protection system must be either: sacrificial anodes and dielectrical coating, or impressed current. (Another method s acceptable if it is recognized in a code of practice, such as API 651, or by a nationally-recognized association, such as NACE.)"

Conventional Deep Anode System Disadvantages

Premature system failure
 Costly re-drilling at failure
 Potential for cross mixing of subsurface aquifers
 Creates conduit for surface spills

API 653 Floor Scan

Our Business

Engineering Design, Application & Installation of:

- **Cathodic Protection**
- Corrosion Monitoring
- Material Selection
- Chemical Treatment Systems
- Protective Coatings
- Pipeline Integrity Assurance Programs

Worldwide RE Corrpro Corrosion Companies DOD-ALL ELECTRIC Incorporated "A Commitment to Excellence" **Control Source** Jonan City Research

