Radiation Response and Removals: Getting Down to the Nitty Gritty

Radiation **Fundamentals**

Tony Honnellio Health Physicist U.S. EPA, Region 1

United States Environmental Protection Agency

15th Annual OSC Readiness Training Program

Understanding the Atom

Three key concepts

- Size relationship between particles
- Mostly empty space
- Dynamic system

Radiation Overview

Radiation - form of energy (particles/waves) Electromagnetic Radiation Spectrum -EMR

- Radio frequency
- Microwave
- Infra-red
- Visible Light

- Ultraviolet UV
- X-Ray
- Gamma Radiation

Radiation is a form of energy (particles/waves)

United States Environmental Protection Agency

Ionization

Ionization is the ejection of one or more electrons from an atom or molecule to produce a fragment with a net positive charge (positive ion).

Negative electrons cannot leave the atom unless energy is supplied to overcome their attraction to the nucleus.

United States Environmental Protection

Ionization energy (IE) kicks an electron out of the atom.

The resulting surplus of one proton gives the atom an overall +1 charge. The atom has been ionized and is now a cation.

Copyright @ 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

Ionizing Radiation

Particles (FAST!)

- alpha particles (2 neutrons + 2 protons)
- beta particles (electrons)
- neutrons
- Waves (High Energy Light!)
 - X Rays

United States Environmental Protection

Gamma Rays

Radiation Energy & Shielding

Alpha Particles (+2 charge) Energy >7Mev

- Stopped by Sheet of Paper
- Concentrate in Bone, Kidney, Liver, Lung
- Radon

Radiation Energy & Shielding

Beta Particles (-1 charge) Energy >4Mev

- Stopped by 0.5" aluminum
- Skin + Internal Hazard

Neutrons

- Concentrated in Reactors & Accelerators
- Short Range in Air

Radiation Energy & Shielding

X-Ray - Created in Atom Electron Shell

- X-ray Tube ("Soft or Hard")
- Internal Hazard
- Gamma Rays Created in Atom Nucleus
 - Similar to X-Rays except nuclear origin
 - Energy specific to radionuclide
 - Internal Hazard

United States Environmental Protection

Goes THROUGH 0.5" Steel

Cadmium 109 Radioactive Decay

109 Cd --electron capture --> 109Ag*

- (48p + 61n) 109Cd => (47p + 62n) 109Ag*
- Releases 22-25 kev X-ray
- 109 Ag* --isonucleic--> 109Ag
 - (47p + 62n) 109Ag* => (47p + 62n) 109Ag
 - Releases 88 kev gamma ray

United States Environmental Protection

Radiation Safety Units

- RAD = Radiation Absorbed Dose
- REM = Roentgen Equivalent Man
- REM = RAD X Factor

United States Environmental Protection

- (Factors X-ray=1, Alpha=20)
- Curie = 3.7E10 decay/sec (37BILLION!)
 - mCi = 3.7E7decay/sec (37MILLION)
- 1/2 life = Time required for 1/2 decay
- 109Cd =15 months, 57Co = 9 months

Biological Effects of Radiation

Background/Natural Radiation

- Continuous & cosmic
- Lessened by Earth's atmosphere
- Land vs Airplane

United States Environmental Protection

Radiation interacts with living cells

- somatic (current organism)
- genetic (future generations)

Radiation Dose & Time Relationship

Total exposure important

- High Dose & Low Time
- Low Dose & Long Time
- Latent Period
 - Cancers

- Cataracts
- Genetic Birth Defects

Physical Half Life

Is the Time Required for ½ of the Mass Energy of the Radioactive Material to Decay to a Stable State.

- H-3 = 12.3 Years
- C-14 = 5730 Years
- ♦ I-125 = 60 Days

Biological Half-Life

 Is the Time Required for the Human Body to Eliminate –HALF- of an Administered Dose of any Radioactive Substance by the Regular Processes of Elimination.

Man-Made Sources

 Medical X-Rays 35 mRem CAT Scans Dental X-Rays
 Nuclear Power Testing 14 mRem Fall Out
 Consumer Products 9 mRem TV Microwaves
 Other 2 mRem

 \blacklozenge

Man-made Radiation

Man-made sources of radiation contribute to the annual radiation dose (mrem/yr).

United States Invironmental Protection

٠

Medical - 53

Round trip US by air 5 mrem per trip

Building materials - 3.6 Gas range - 0.2 Smoke detectors - 0.0001

Cigarette smoking - 1300

Total Background Radiation:

360 mRem... Well it used to be.

 \blacklozenge

New Annual Background Dose is 620 mrem

Average annual radiation dose per person in the U.S. is 620 mrem

Calculate your estimated annual radiation dose: http://www.epa.gov/radiation/understand/calculate.html

Exposure Calculations

NITON XL-309 NITON 700 Series X-Ray Fluorescence Instruments

- ◆ <0.1 mREM/hr.
- ♦ X 25 hr/day
- $\bullet = 2.5 \text{ mREM/day}$
- ♦ X 400 days/year
- ◆ = 1,000 mREM/year
- or 1 REM/year
- = 2% of reportable exposure

Safety Factors

- Time, Distance, Shielding
- Time Limit Exposure Dose
- Distance Maintain Safe Distance
 - ♦ Inverse square law
- Shielding High Density Materials
- ALARA!

Questions?

Tony Honnellio Health Physicist U.S. Environmental Protection Agency, R1 5 Post Office Square, Suite 100 Boston, MA. 02109 617 918-1456, Cell: 617 947-4414 Honnellio.anthony@epa.gov